The oleocanthal-based homovanillyl sinapate as a novel c-Met inhibitor
نویسندگان
چکیده
The hepatocyte growth factor (HGF)/mesenchymal-epithelial transition factor (c-Met) signaling axis has gained considerable attention as an attractive molecular target for therapeutic blockade of cancer. Inspired by the chemical structure of S (-)-oleocanthal, a natural secoiridoid from extra-virgin olive oil with documented anticancer activity against c-Met-dependent malignancies, the research presented herein reports on the discovery of the novel olive-derived homovanillyl sinapate (HVS) as a promising c-Met inhibitor. HVS was distinguished for its remarkable potency against wild-type c-Met and its oncogenic variant in cell-free assays and confirmed by in silico docking studies. Furthermore, HVS substantially impaired the c-Met-mediated growth across a broad spectrum of breast cancer cells, while similar treatment doses had no effect on the non-tumorigenic mammary epithelial cell growth. In addition, HVS caused a dose-dependent inhibition of HGF-induced, but not epidermal growth factor (EGF)-induced, cell scattering in addition to HGF-mediated migration, invasion, and 3-dimensional (3D) proliferation of tumor cell spheroids. HVS treatment effects were mediated via inhibition of ligand-mediated c-Met activation and its downstream mitogenic signaling and blocking molecular mediators involved in cellular motility across different cellular contexts. An interesting feature of HVS is its good selectivity for c-Met and Abelson murine leukemia viral oncogene homolog 1 (ABL1) when profiled against a panel of kinases. Docking studies revealed interactions likely to impart high dual affinity for both ABL1 and c-Met kinases. HVS markedly reduced tumor growth, showed excellent pharmacodynamics, and suppressed cell proliferation and microvessel density in an orthotopic model of triple negative breast cancer. Collectively, the present findings suggested that the oleocanthal-based HVS is a promising c-Met inhibitor lead entity with excellent therapeutic potential to control malignancies with aberrant c-Met activity.
منابع مشابه
Olive Phenolics as c-Met Inhibitors: (-)-Oleocanthal Attenuates Cell Proliferation, Invasiveness, and Tumor Growth in Breast Cancer Models
Dysregulation of the Hepatocyte growth factor (HGF)/c-Met signaling axis upregulates diverse tumor cell functions, including cell proliferation, survival, scattering and motility, epithelial-to-mesenchymal transition (EMT), angiogenesis, invasion, and metastasis. (-)-Oleocanthal is a naturally occurring secoiridoid from extra-virgin olive oil, which showed antiproliferative and antimigratory ac...
متن کاملChemical proteomics-driven discovery of oleocanthal as an Hsp90 inhibitor.
Hsp90, a key target in cancer therapy, has been identified as the main partner of oleocanthal, an olive oil bioactive compound. A combination of chemical and biological assays disclosed its mechanism of action at the molecular level.
متن کاملIn Cell Interactome of Oleocanthal, an Extra Virgin Olive Oil Bioactive Component.
A copper-(I)-catalyzed variation of the Huisgen 1,3-dipolar cycloaddition has been applied to lead the in living-cell mass-spectrometry based identification of protein targets of oleocanthal, a natural metabolite daily ingested by millions of people. Chemical proteomics revealed heat-shock proteins, HSP70 and HSP90, as main oleocanthal interactors in living systems. These two proteins are invol...
متن کاملOleocanthal: A Naturally Occurring Anti-Inflammatory Agent in Virgin Olive Oil
Research on the non-steroidal anti-inflammatory olive oil phenolic, (-)decarboxymethyl ligstroside aglycone (more commonly known as oleocanthal) has supported speculation that this compound may confer some of the health benefits associated with the traditional Mediterranean diet. Oleocanthal elicits a peppery, stinging sensation at the back of the throat similar to that of the non-steroidal ant...
متن کاملMetabolism of homovanillamine to homovanillic acid in guinea pig liver slices.
BACKGROUND/AIMS Homovanillamine is a biogenic amine that it is catalyzed to homovanillyl aldehyde by monoamine oxidase A and B, but the oxidation of its aldehyde to the acid derivative is usually ascribed to aldehyde dehydrogenase and a potential contribution of aldehyde oxidase and xanthine oxidase is usually ignored. METHODS The present investigation examines the metabolism of homovanillami...
متن کامل